Colorado mountains
 

Seasonality and Disturbance Events in the Carbon Isotope Record of Pinus elliottii Tree Rings from Big Pine Key, Florida

Poster Number: 
94
Presenter/Primary Author: 
Carrie Rebenack
Co-Authors: 
William T. Anderson
Co-Authors: 
Paolo Cherubini

The South Florida coastal ecosystem is among the world’s subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices.

 

Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation-driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations, and disturbance events, such as tropical cyclone impacts. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations.

 

The work presented here is the result of a carbon-isotope study of four slash pine trees from Big Pine Key, Florida. Initial δ13C data show seasonal stomatal activity in the trees and indicate the timing of possible disturbance events.

Student Poster: 
Yes

 
 
Background Photo by: Nicole Hansen - Jornada (JRN) LTER