
Using remote sensing tools to calculate biomass 
consistently across LTER sites

Kyle Cavanaugh
SBC, LNO 

Tom Bell
SBC

Utilizing Landsat time series

LTER All Scientists Meeting
September 11, 2012



• Landsat satellite program 
started around the same time 
as funding for the first LTER 
sites

• Landsat 5 TM: 1984-2011

• 30 m resolution

• nearly global coverage

• 16 day repeat time

• Individual sites have utilized 
Landsat 

• Lack of cross-site studies 
utilizing Landsat

LTER and Landsat



Landsat imagery has been available for free since 2009



Landsat data has been used for a wide variety 
of ecological purposes

Land cover change

Urban expansion

Crop production

Deforestation/reforestation

Monitoring glacial changes

Coral reef health

Shoreline mapping

Monitoring forest fires

Tracking vegetative biomass dynamics

and much more...
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• Unmatched 
historic record

• Spatial coverage

• Temporal coverage

• Free

Advantages Limitations

• Data saturation at 
high biomass levels

• relatively insensitive 
to vegetation height

• lack of freely 
available higher-level 
data products

Advantages and limitations for using Landsat to perform 
cross-site biomass comparisons



How can we better leverage Landsat for cross-site studies?

Estimating biomass with Landsat: 
case study

Integrating LiDAR and Landsat

LTER Landsat database

giant kelp forests (SBC)

Asner (2009)

Cavanaugh et al. (2011)



1. Estimating biomass with Landsat: a kelp forest 
case study from SBC 

average canopy 
biomass (kg/m2)

SBC LTER



Spectral unmixing used to estimate the percent 
of each pixel covered by kelp canopy



SBC-LTER diver surveys used to transform 
Landsat kelp fractions into canopy biomass

• Monthly non-destructive allometric 
biomass surveys from 2002-present

• Compared Landsat image to diver 
survey closest in time



LANDSAT Kelp Fraction 
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r2 = 0.62 
p < 0.001  

Strong relationship between kelp fraction and 
diver measured canopy biomass

Cavanaugh et al. (2011)



Dynamics of kelp forests in the Santa Barbara 
Channel from 1984-2011



• Regional mean: 42,000 metric tons of giant kelp canopy

• low in winter, high in summer/fall

• annual cycle superimposed on 11-13 year cycle

• no clear long-term trend
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Dynamics of kelp forests in the Santa Barbara 
Channel from 1984-2011



This data allows us to expand the scale of our 
LTER site research 

• regional variability in 
biomass and NPP 
dynamics

• regional variability in 
the drivers of NPP

• regional variability in 
kelp forest food web 
structure

• range limit dynamics

SBC LTER

San Diego

Los Angeles

San Francisco



2. Integrating LiDAR 
and Landsat

Asner (2010)

• Landsat does forest cover 
well, but is insensitive to 
vegetation height

• LiDAR can accurately 
estimate forest biomass but 
has limited spatial and 
temporal coverage

• Integrating the two could 
yield repeated high 
resolution and cost effective 
maps of forest biomass



Fig. S4. (A) Allometric relationship between diameter and height for 1,681 trees measured using either laser range finders or clinometers. At least 10 trees
were measured in each of the 131 30-m radius plots, including the three largest diameter trees in each plot. (B) LiDAR-to-carbon density relationships for
vegetation at least 10 cm in diameter in 131 30-m-radius plots: MCH; canopy height (CH); and quadratic mean canopy profile height (QMCH). (C) LiDAR-to-C
density relationships for low vegetation in bamboo and nonbamboo forest types. Both regressions reflect the combination of 3-m plot data and 30-m plot data
for stems smaller than 10 cm diameter.

Asner et al. www.pnas.org/cgi/content/short/1004875107 9 of 15

Asner (2010)

A. Calibrate LiDAR w/ field 
measurements



Asner (2010)

B. Sample each vegetation 
type w/ LiDAR



!"#$%&"%'()*&%"

!+,"-./012"3.40/"56"270"80/945:6"$;:<.6!
"#$!%&''&()*+!,-.$!./01)$.!1$2&*./3-/$!/#$!4567')/$!-883&-,#!0.)*+!9&/#!.)*+'$:!-*1!20'/):
)2-+$!-*-';.).! /$,#*)<0$.=!"#$.$!./01)$.!-'.&!#)+#')+#/!.$>$3-'!,3)/),-'! )..0$.!3$'-/)*+!%&3$./!
,&>$3! 2&*)/&3)*+! /&! 1$%&3$./-/)&*! -*1! %&3$./! 1$+3-1-/)&*! -*-';.).! -*1! /3-,?)*+=! "#$! %)3./!
$@-28'$! 0.$.! 5-*1.-/! A! B"CD! )2-+$3;! ,&''$,/$1! &>$3! -! EFF! ?2G! 8&3/)&*! &%! /#$! H$30>)-*!
62-I&*=!"#$!./01;!-3$-!.#&(*!)*!J)+=!G!*$)+#9&3.!/#$!/&(*!&%!H0',-''8-K!H$30K!'&,-/$1!-9&0/!
LGM! ?2! ($./! &%! /#$! N3-I)')-*! 9&31$3! )*! '&('-*1! /3&8),-'! %&3$./=! "#$! -3$-! )*,'01$.! 3$,$*/!
1$%&3$./-/)&*! -..&,)-/$1! ()/#! /#$! $@8-*.)&*! &%! ,-//'$! 3-*,#)*+! -*1! ,3&8! -+3),0'/03$=! "#$!
5-*1.-/!)2-+$!(-.!,&''$,/$1!&*!O0';!EK!GFFG=!
"#$!60/&C4P!(-.!30*!&*!/#$!,-')93-/$1!3$%'$,/-*,$!)2-+$K!;)$'1)*+!/#$!3$.0'/.!.#&(*!)*!

J)+=!Q=!R*/-,/!%&3$./!).!1&2)*-/$1!9;!#)+#!HS!%3-,/)&*.!TEF:EUVW!+3$$*!,&'&3.XK!'&(!YHS!TG:!

!
J)+=!Q=!";8),-'!&0/80/!%3&2!/#$!60/&C4P!.09:2&1$'!30*!&*!/#$!)2-+$3;!.#&(*!)*!J)+=!G9=!!
R*! $-,#! )2-+$! 8)@$'K! /#$! %3-,/)&*.! &%! HSK! YHS! -*1! 9-3$! .09./3-/$! -3$! $@83$..$1! )*!
8$3,$*/-+$.! TF:LFFVX=!"#$!-3$-.! )*!9'-,?! )*,'01$! 3)>$3.K! '-?$.K!,'&01.!-*1!,'&01!.#-1&(.!
2-.?$1!>)-!/#$!ZC7B!-*-';.).!)22$1)-/$';!%&''&()*+!/#$!60/&C4P=!!

Journal of Applied Remote Sensing, Vol. 3, 033543 (2009)                                                                                                                                    Page 12

!"#$%&'()*+(+)',()%-'(+').(/+&01)02)3$)4,''56773+8%'9/&80/:7;<)=,&>,)+*550/'+)"-19+-'?@<)A<)-19)
B<)-+)=(%%)-+)#$CDE<)#"F<)-19)$GHC8)!"#$%&'()90(+)10')5(/20/I)-'I0+5,(/&>)>0//(>'&01)01)
JHKF$)%-19)&I-:(/L)M(>-*+()',0+()9-'-)-/()-%/(-9L)5/0>(++(9)'0)+*/2->()/(2%(>'-1>()&1)',()N?
9-L) >0I50+&'() 5/09*>') 4JHKOP#QR) ,''5+677%59-->8) *+:+8:0.7%59-->75/09*>'+7I09&+S)
5/09*>'+S'-M%(7+*/2->(S/(2%(>'-1>(7NS9-LS%TS:%0M-%SAOOI7.A7'(//-;8)
U(>-*+()M&0I-++)M*/1&1:)&+).(/L)>0II01)&1)05'&>-%)+-'(%%&'()&I-:(/L)02)'/05&>-%)/(:&01+<)

=() &I5%(I(1'(9) -1) -*'0I-'(9) ,-V() >0//(>'&01) ',-') /*1+) -+) -) +(>019-/L) -'I0+5,(/(?
>0I5(1+-'&01)05'&01) 20/)"-19+-')9-'-) &1)!"#$%&'() 4W&:8)X;8)C,()(I5&/&>-%)I(',09)*+(+) ',()
YFE)-19)$ZFE)M-19+)4@<A<)-19)B;)'0)9(.(%05)-)%00[*5)'-M%()02)-.(/-:()/-9&-1>()02)',().&+&M%()

)
W&:8)X8)4-;)E-=)"-19+-')B)D1,-1>(9)C,(I-'&>)J-55(/)G%*+)4DCJ\;)&I-:(/L)'-[(1)0.(/)
',() G(/*.&-1)#I-V01) &1) XOOX8) 4M;) $-I() &I-:() 20%%0=&1:) -'I0+5,(/&>) >0//(>'&01) -19)
,-V()+*55/(++&018)D]*&.-%(1'),&+'0:/-I)+'/('>,(+)=(/()-55%&(9)'0)M0',)&I-:(+8)

Journal of Applied Remote Sensing, Vol. 3, 033543 (2009)                                                                                                                                    Page 5

raw Landsat 
image

forest fraction 
image

Asner (2010)

C. Calculate the fraction of 
each pixel covered by forest 
using Landsat imagery
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major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha−1, whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha−1. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha−1 (t test comparisons on randomly selected sub-
sets, P < 0.001).
Stepping down in geographic scale from geologic controls, we

uncovered enormous variation in standing carbon within and
among forest types (Fig. 3A and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 3A). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 ± 18.3 (SD) Mg C ha−1. Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 ± 15.4 Mg C ha−1, which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 ± 32.8 Mg C ha−1, whereas those maintaining at
least 60% cover support 61.4 ± 56.2 Mg C ha−1 (Fig. S10).
Integrating historical deforestation and degradation results

(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
annual gross aboveground carbon emissions from 1999 to 2009
(Fig. 3B). Results show a baseline emission rate for 1999 to 2006
of 0.26 ± 0.08 Tg C yr−1 from deforestation and 0.11 ± 0.02
Tg C yr−1 from degradation, for a sum of 0.37 Tg C yr−1. Paving of
the Interoceanic Highway since 2006, combined with new timber
logging concessions and gold mining, caused an increase in de-
forestation emissions by more than 61% to 0.42 ±0.21 Tg C yr−1,

Fig. 2. Variation in aboveground carbon storage at 0.1 ha resolution throughout a 4.3 million ha region of the Peruvian Amazon, derived from an integrated
use of CLASlite, LiDAR and field-plot data. Examples of (i) artisanal gold mining, (ii) selective logging and other forest disturbances, and (iii) deforestation for
cattle ranching, road building, and other infrastructure are indicated.

16740 | www.pnas.org/cgi/doi/10.1073/pnas.1004875107 Asner et al.

vegetation map

median biomass of 
each vegetation 

type

aboveground biomass map

Asner (2010)

D.  Assign each pixel a biomass value based on the 
median biomass of its vegetation type and weight 
biomass by fraction of pixel covered by forest



major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha−1, whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha−1. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha−1 (t test comparisons on randomly selected sub-
sets, P < 0.001).
Stepping down in geographic scale from geologic controls, we

uncovered enormous variation in standing carbon within and
among forest types (Fig. 3A and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 3A). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 ± 18.3 (SD) Mg C ha−1. Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 ± 15.4 Mg C ha−1, which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 ± 32.8 Mg C ha−1, whereas those maintaining at
least 60% cover support 61.4 ± 56.2 Mg C ha−1 (Fig. S10).
Integrating historical deforestation and degradation results

(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
annual gross aboveground carbon emissions from 1999 to 2009
(Fig. 3B). Results show a baseline emission rate for 1999 to 2006
of 0.26 ± 0.08 Tg C yr−1 from deforestation and 0.11 ± 0.02
Tg C yr−1 from degradation, for a sum of 0.37 Tg C yr−1. Paving of
the Interoceanic Highway since 2006, combined with new timber
logging concessions and gold mining, caused an increase in de-
forestation emissions by more than 61% to 0.42 ±0.21 Tg C yr−1,

Fig. 2. Variation in aboveground carbon storage at 0.1 ha resolution throughout a 4.3 million ha region of the Peruvian Amazon, derived from an integrated
use of CLASlite, LiDAR and field-plot data. Examples of (i) artisanal gold mining, (ii) selective logging and other forest disturbances, and (iii) deforestation for
cattle ranching, road building, and other infrastructure are indicated.

16740 | www.pnas.org/cgi/doi/10.1073/pnas.1004875107 Asner et al.

whereas degradation emissions doubled to 0.21 ± 0.11 Tg C yr−1

(Fig. 3B). Critically, we found that degradation emissions aver-
aged 47% of deforestation emissions (annual range, 22%–68%)
during the 11-y study period, both before and during the recent
increase in human activity throughout the region. In total, 4.529
Tg of aboveground carbon were committed to the atmosphere
from 1999 to 2009, representing approximately 1.1% of the
standing stock of forest carbon in the region.
Secondary forest regrowth, defined here as forests reestab-

lished following any deforestation and degradation that occurred
between 1999 and 2008, covered 24,823 ha in the study region,

representing 38%of the total human-affected area by 2009 (Table
1). Forest regrowth resulted in a range of carbon densities (24-44
Mg C ha−1) based on forest ages of 2 to 11 y (SI Materials and
Methods). Nonetheless, the carbon density of secondary forest is
30.6 ± 16.7 Mg C ha−1, or approximately 60% to 70% lower than
the average carbon stocks for intact forests in the region. Inte-
grated over the 11-y study period, secondary regrowth accumu-
lated 0.812 Tg C, providing an 18% offset to gross emissions that
resulted in a net regional loss of 3.717 Tg C to the atmosphere.
Our results uncover multiple spatial scales of variation in car-

bon stocks throughout the region, and change our understanding
of how forest carbon is distributed and subsequently altered by
land-use change in the southwestern Amazon. To our knowledge,
this is the first study to detail regional-level variation in forest
carbon densities mediated by geologic substrate and forest type
(Figs. 2 and 3A). We also detected an interaction between geo-
logical controls on carbon storage and land-use effects on carbon
emissions: deforestation emissions dominated the flatter quater-
nary substrates that are easier to access for road-building and
farming. In contrast, degradation emissions from selective logging
occurred mostly on eroded tertiary surfaces that are topograph-
ically dissected and difficult to access (Fig. 2).
The observed trend of increasing carbon emissions since 2006

following the development of the Interoceanic Highway is pre-
viously unmeasured (Fig. 3B), but more revealing is the large
contribution of degradation to the total annual gross emissions for
the region. Degradation added an average of 47%more carbon to
the atmosphere than did deforestation alone, and increased in
step with deforestation during the recent period of heightened
land-use activity in the region. Degradation is diffusely distributed
throughout the forested landscapes of Amazonia and other trop-
ical regions, and only by combining very high-resolution airborne
LiDAR techniques with large-area satellite mapping can these
emissions be quantified and monitored over time.
The detailed statistical distributions of aboveground carbon

density were also previously unmeasured because the majority of
the region remains inaccessible on the ground. However, our
airborne measurements reveal highly skewed, often multimodal,
distributions of forest carbon. As a result, we contend that sam-
ples of forest carbon storage obtained with field plots, cannot
account for the spatial variation in carbon stocks, especially in the
context of the mosaic of anthropogenic land uses and resulting
carbon emissions.
In support of REDD, the Intergovernmental Panel on Cli-

mate Change (IPCC) (14) issued a default tier-I estimation ap-
proach of forest carbon density based on average carbon values
assigned for biomes. Applying the IPCC tier-I method to our study
region produced an estimated 587 Tg C in aboveground biomass,
whereas our spatially explicit mapping indicated just 395 Tg C
(Fig. 2). This difference results primarily from the fact that forest
carbon densities are not homogeneous at a variety of scales. Al-
though our regional carbon estimates are 33% lower than IPCC
tier-I estimates, the high-resolution, verifiable nature of our ap-

Fig. 3. (A) Distributions of aboveground carbon storage for the seven
common forest types found in the Peruvian Amazon, derived from airborne
LiDAR. (B) Annual emissions of carbon from deforestation and degradation
mapped from time-series CLASlite imagery and LiDAR data.

Table 1. Area of new land use and forest regrowth integrated from 1999 to 2009

Land use Total area, ha
Proportion of human-

affected area, %
Mean (SD) carbon
density, Mg C ha−1

Gold mining 3,207 4.9 16.7 (18.3)
Forest degradation* 17,740 27.3 35.6 (15.4)
Deforestation† 43,933 67.7 27.8 (16.9)
Secondary regrowth‡ 24,823 38.3 32.7 (7.5)

Mean aboveground carbon densities are reported for 2009.
*Forest degradation is dominated by selective logging in this region.
†Deforestation is dominated by clearing for cattle ranching and farming in this region.
‡Regrowth calculated from deforestation and disturbance mapped between 1999 and 2008.
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major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha−1, whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha−1. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha−1 (t test comparisons on randomly selected sub-
sets, P < 0.001).
Stepping down in geographic scale from geologic controls, we

uncovered enormous variation in standing carbon within and
among forest types (Fig. 3A and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 3A). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 ± 18.3 (SD) Mg C ha−1. Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 ± 15.4 Mg C ha−1, which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 ± 32.8 Mg C ha−1, whereas those maintaining at
least 60% cover support 61.4 ± 56.2 Mg C ha−1 (Fig. S10).
Integrating historical deforestation and degradation results

(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
annual gross aboveground carbon emissions from 1999 to 2009
(Fig. 3B). Results show a baseline emission rate for 1999 to 2006
of 0.26 ± 0.08 Tg C yr−1 from deforestation and 0.11 ± 0.02
Tg C yr−1 from degradation, for a sum of 0.37 Tg C yr−1. Paving of
the Interoceanic Highway since 2006, combined with new timber
logging concessions and gold mining, caused an increase in de-
forestation emissions by more than 61% to 0.42 ±0.21 Tg C yr−1,
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major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha−1, whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha−1. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha−1 (t test comparisons on randomly selected sub-
sets, P < 0.001).
Stepping down in geographic scale from geologic controls, we

uncovered enormous variation in standing carbon within and
among forest types (Fig. 3A and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 3A). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 ± 18.3 (SD) Mg C ha−1. Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 ± 15.4 Mg C ha−1, which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 ± 32.8 Mg C ha−1, whereas those maintaining at
least 60% cover support 61.4 ± 56.2 Mg C ha−1 (Fig. S10).
Integrating historical deforestation and degradation results

(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
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annual aboveground biomass maps

Landsat can be used to create time series of forest biomass 
dynamics based on changes in forest coverage of each pixel



3. LTER Landsat database

• LTER Network Office is 
creating a database of all 
acceptable (<50% cloud 
cover) Landsat 5 imagery 
for each site (1984-2011)

• each site: 40-1000 images

• Currently working on 
integrating database into 
LTER Network Information 
System 

• Next steps: repository for 
Landsat analysis algorithms, 
protocols, higher level data 
products (e.g. atmospheric 
corrections, landcover data, 
biomass data, etc.)



Arctic & Antarctic sites

ARC BNZ

PAL MCM

• High latitude sites 
have very limited 
availability of 
Landsat imagery



Coastal sites - Atlantic

PIE

VCR GCE

FCE

• Mangrove, salt 
marshes, seagrasses, 
coral reefs, kelp 
forests



Coastal sites - Pacific

SBC CCE

MCR



Urban sites

BES
CAP



Forest sites

LUQ

HBR

HFR

AND

• May need to 
integrate LiDAR data 
to accurately 
estimate forest 
biomass changes



Grassland sites

NWT SGS

SEV

JRN



Mid-western sites

CDR KBS

KNZ CWT

NTL



Cross-site project issues

• Should cross-site projects focus on a specific ecosystem type 
(e.g. forest, wetland)? Sensor type (e.g. Landsat, LiDAR)? 
Something else (e.g. phenology, long-term trends, response to 
disturbance)?

• What are the standardized data products we need to produce?  
Can we leverage existing data products that have already been 
created by individual sites?


