Using remote sensing tools to calculate biomass consistently across LTER sites

Utilizing Landsat time series

Kyle Cavanaugh SBC, LNO

Tom Bell SBC

LTER All Scientists Meeting September 11, 2012

LTER and Landsat

- Landsat satellite program started around the same time as funding for the first LTER sites
- Landsat 5 TM: 1984-2011
 - 30 m resolution
 - nearly global coverage
 - 16 day repeat time
- Individual sites have utilized Landsat
- Lack of cross-site studies utilizing Landsat

Landsat imagery has been available for free since 2009

Landsat data has been used for a wide variety of ecological purposes

- Land cover change
- Urban expansion
- Crop production
- Deforestation/reforestation
- Monitoring glacial changes
- Coral reef health
- Shoreline mapping
- Monitoring forest fires
- Tracking vegetative biomass dynamics and much more...

Landsat data has been used for a wide variety of ecological purposes

- Land cover change
- Urban expansion
- Crop production
- Deforestation/reforestation
- Monitoring glacial changes
- Coral reef health
- Shoreline mapping
- Monitoring forest fires

Tracking vegetative biomass dynamics

and much more ...

Advantages and limitations for using Landsat to perform cross-site biomass comparisons

Advantages

- Unmatched historic record
- Spatial coverage
- Temporal coverage
- Free

Limitations

- Data saturation at high biomass levels
- relatively insensitive to vegetation height
- lack of freely available higher-level data products

How can we better leverage Landsat for cross-site studies?

Estimating biomass with Landsat: case study

giant kelp forests (SBC)

Cavanaugh et al. (2011)

Integrating LiDAR and Landsat

LTER Landsat database

I. Estimating biomass with Landsat: a kelp forest case study from SBC

Spectral unmixing used to estimate the percent of each pixel covered by kelp canopy

SBC-LTER diver surveys used to transform Landsat kelp fractions into canopy biomass

- Monthly non-destructive allometric biomass surveys from 2002-present
- Compared Landsat image to diver survey closest in time

Strong relationship between kelp fraction and diver measured canopy biomass

Cavanaugh et al. (2011)

Dynamics of kelp forests in the Santa Barbara Channel from 1984-2011

Dynamics of kelp forests in the Santa Barbara Channel from 1984-2011

- Regional mean: 42,000 metric tons of giant kelp canopy
- low in winter, high in summer/fall
- annual cycle superimposed on 11-13 year cycle
- no clear long-term trend

This data allows us to expand the scale of our LTER site research

- regional variability in biomass and NPP dynamics
- regional variability in the drivers of NPP
- regional variability in kelp forest food web structure
- range limit dynamics

2. Integrating LiDAR and Landsat

- Landsat does forest cover well, but is insensitive to vegetation height
- LiDAR can accurately estimate forest biomass but has limited spatial and temporal coverage
- Integrating the two could yield repeated high resolution and cost effective maps of forest biomass

A. Calibrate LiDAR w/ field measurements

Asner (2010)

B. Sample each vegetation type w/ LiDAR

C. Calculate the fraction of each pixel covered by forest using Landsat imagery

Landsat can be used to create time series of forest biomass dynamics based on changes in forest coverage of each pixel

3. LTER Landsat database

- LTER Network Office is creating a database of all acceptable (<50% cloud cover) Landsat 5 imagery for each site (1984-2011)
- each site: 40-1000 images
- Currently working on integrating database into LTER Network Information System
- Next steps: repository for Landsat analysis algorithms, protocols, higher level data products (e.g. atmospheric corrections, landcover data, biomass data, etc.)

Arctic & Antarctic sites

High latitude sites

have very limited

Landsat imagery

availability of

PAL

BNZ

MCM

Coastal sites - Atlantic

VCR

PIE

GCE

Mangrove, salt marshes, seagrasses, coral reefs, kelp forests

Coastal sites - Pacific

SBC

CCE

MCR

Urban sites

SUSCS

BES

CAP

Forest sites

AND

HBR

HFR

 May need to integrate LiDAR data to accurately estimate forest biomass changes

Grassland sites

NWT

Mid-western sites

CWT

Cross-site project issues

- Should cross-site projects focus on a specific ecosystem type (e.g. forest, wetland)? Sensor type (e.g. Landsat, LiDAR)? Something else (e.g. phenology, long-term trends, response to disturbance)?
- What are the standardized data products we need to produce? Can we leverage existing data products that have already been created by individual sites?