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Abstract

Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics,
has attracted a great deal of attention in recent years as deforestation and forest degradation
account for up to 30% of anthropogenic carbon emissions, and are now included in climate change
negotiations. We review the potential for satellites to measure carbon stocks, specifically
aboveground biomass (AGB), and provide an overview of a range of approaches that have been
developed and used to map AGB across a diverse set of conditions and geographic areas. We
provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess
the relative merits and limitations of each. We then provide an overview of traditional techniques
of mapping AGB based on ascribing field measurements to vegetation or land cover type classes,
and describe the merits and limitations of those relative to recent data mining algorithms used in
the context of an approach based on direct utilization of remote sensing measurements, whether
optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing
has often been discounted as inadequate for the task, attempts to map AGB without satellite
imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent
maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on
continental Africa and discuss the work in the context of reducing uncertainty for carbon
monitoring and markets.

Background

The monitoring requirements for reducing emissions
from deforestation and forest degradation have been
widely discussed and documented in a range of publica-
tions, including overviews of the general requirements to
meet policy needs [1] as well as a variety of papers on the
technical aspects and limitations of various monitoring
approaches [2-5]. The general consensus of these docu-

ments is that monitoring of forest cover change using sat-
ellite remote sensing is practical and feasible for
determining baseline deforestation rates against which
future rates of change can be based, provided that ade-
quate validation and accuracy assessments are conducted
and documented. The type of monitoring and baseline
approach used has been the subject of much discussion,
with a range of modifications proposed to deal with
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equity issues among countries with different historical
rates of deforestation. Methods to map and monitor forest
degradation, in which only a portion of the forest stock is
removed, have also been developed. These range from
straightforward visual interpretation of satellite imagery at
multiple spatial scales (grain sizes) [6] to semi-automated
algorithmic techniques that require technical expertise to
implement [7]. Mapping and monitoring of carbon
stocks, on the other hand, has often been regarded as
beyond the current capability of satellite remote sensing
technology, despite great need [8], partly because much of
the research on this topic has historically focused on field
sampling approaches [9]. Nonetheless, mapping carbon
stocks over large areas without satellite data is clearly
problematic [10].

Basing UNFCCC (United Nations Framework Conven-
tion on Climate Change) REDD (Reduced Emissions from
Deforestation and Degradation) policies on a carbon
stock mapping approach would have a number of benefits
relative to approaches based solely on field sampling and
forest inventories. This is true not only in terms of improv-
ing estimates of carbon stored in forests for the emerging
carbon markets, by providing spatially explicit informa-
tion on the location of carbon stocks, but also with respect
to avoiding the ambiguities, uncertainties and outright
differences among land cover type classifications [11]. A
carbon stock approach could allow countries to report at
a higher IPCC (Intergovernmental Panel on Climate
Change) reporting tier by providing country-specific data
and advanced methods and data for land conversions,
even at a Tier 3 level which is defined in the Good Practice
Guidance (GPG) as including "models and inventory
measurement systems tailored to address national circum-
stances, repeated over time, and driven by high-resolution
activity data and disaggregated at sub-national to fine grid
scales (GPG 3.17)" [12]. A carbon stock monitoring
approach is directly linked with biomass dynamics. Since
such an approach does not depend upon the determina-
tion of land use/cover types as a step in estimating bio-
mass, the uncertainty associated with these classifications
is removed. Land classifications may still be applied to the
biomass map for the purposes of accounting and report-
ing, but they are no longer a necessary step in the determi-
nation of the biomass of the land area. A carbon stock
monitoring approach will introduce different, and per-
haps additional, sources of uncertainty than other more
traditional methods, but can reduce the overall uncer-
tainty level below Tier 1 methods, and depending on the
specific situation, is also likely to reduce uncertainties
below Tier 2 methods, in addition to providing geograph-
ically explicit information on changes in carbon stocks.
This approach could be used to obtain estimates for
above-ground biomass (AGB) in all of the categories of
LULUCF (Land Use, Land Use Change and Forestry)
reporting, including categories where land classification
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remains the same (i.e. Forest Land Remaining Forest
Land) and in categories defining changes in land use (i.e.
Land Converted to Forest Land). Additionally, this
approach would also allow a Tier 2 key category analysis
(GPG 5.30), as it can provide specific uncertainty esti-
mates for each category measured with this approach.

In the remainder of this overview we use carbon stock and
above-ground biomass terminology interchangeably
(biomass is typically 50% carbon). We recognize that car-
bon stocks can refer to below-ground and soil carbon as
well, neither of which are directly discussed here.

Overview of Satellite Measurements useful for
Carbon Stock Mapping

Synthetic Aperture Radar (SAR)

Since the 1960's, SAR has been used to produce images of
earth-surface features based on the principles of radio
detection and ranging (RADAR, often used as a synonym
for SAR) and has been widely used to map AGB [13,14].
SAR systems are active, which means they transmit micro-
wave energy and measure the amount of that energy
reflected back to the sensor. As a result, SAR sensors can
operate day or night while penetrating through haze,
smoke, and clouds. The microwave energy transmitted by
a SAR also penetrates into forest canopies, with the
amount of backscattered energy largely dependent on the
size and orientation of canopy structural elements, such as
leaves, branches and stems. The sensitivity of SAR sensors
to different AGB components is a function of the wave-
length of the sensor, with shorter-wavelengths (X and C
band) being sensitive to smaller canopy elements (leaves
and small branches) and longer wavelengths (L and P
band) sensitive to large branches and stems. Measuring
the orientation (polarization) of the transmitted and
received electro-magnetic waves allows for further sensi-
tivity to AGB measurements. Also, the application of
interferometric SAR (InSAR) is employed to improve
retrievals of AGB through proxies of vegetation height
[15]. Extensive analyses with existing SAR sensors, mostly
L-band, suggest the sensitivity of radar backscatter "satu-
rates" around 100 - 150 tons ha1[13]. A number of radar
satellites are currently in operation, including the Cana-
dian RADARSAT 1/2 (C-band), the Japanese ALOS/PAL-
SAR (L-band), the European ENVISAT/ASAR (C-band),
the German TerraSAR-X (X-band), and the Italian Cosmo/
SkyMed (X-Band). Several others are planned for launch
within 5-10 years, including the ALOS follow-on mission
(L-Band), the NASA DESDynl (L-band), the European
BIOMASS (P-band), the German Tandem-X (X-band
InSAR), and the German/Brazilian MAPSAR (L-Band).

Light Detection and Ranging (lidar)

Like radar, lidar is based on the concept of actively sensing
the vegetation using a pulse of energy, in this case from a
laser operating at optical wavelengths (rather than at radio
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wavelengths). Lidar does not penetrate clouds but has the
unique capability of measuring the three-dimensional
vertical structure of vegetation in great detail, sometimes
with hundreds of measurements in the vertical dimension
for each location on the Earth [16]. Whereas lidar has only
been widely used for a little more than a decade, primarily
for forestry operations using aircraft-based sensors, it has
revolutionized the way vegetation, particularly biomass, is
measured from satellites [17-21]. There are few lidar
instruments currently operating from satellite platforms,
and none that were designed specifically for vegetation
characterization. At least one such mission, a lidar on
DESDynl, is planned for launch in the next few years. A
currently operating satellite lidar sensor originally
designed for monitoring ice dynamics, the Geoscience
Laser Altimetry System (GLAS) onboard ICESAT, is being
used for vegetation analysis despite having limited spatial
coverage and a relatively large (ca 70 m) ground footprint.

Optical

Optical remote sensing, i.e., passive sensing of visible and
near-infrared reflectance from the earth, forms the basis
for much of current global scale mapping (GoogleEarth,
for example, is based on a combination of observations
from the Landsat and Quickbird series of satellites). Opti-
cal measurements have been widely used in studies that
link AGB measurements from the field to satellite obser-
vations, based on sensitivity of the optical reflectance to
variations in canopy structure, but these have not proven
to be consistent over large areas because surface condi-
tions may change more rapidly than the repeat time of the
cloud-free satellite observations, producing artefacts in
the derived maps. This has been overcome using frequent
repeat measurements from sensors such as the Moderate
Resolution Imaging Sensors (MODIS) onboard the AQUA
and TERRA satellites [20,22]. Despite some issues with the
continuity of optical satellite missions [23] a wide range
of sensors are expected to be operational well into the
future.

Multi-sensor Synergy

No single sensor on any satellite mission, whether radar,
lidar or optical, can be expected to provide consistently
infallible estimates of biomass, but use of these measure-
ments in a synergistic fashion can potentially overcome
the limitations of each (whether radar saturation, lidar
sampling modes, or optical temporal mismatches). More-
over, some remote sensing observations may be more sen-
sitive to AGB in specific environments (e.g. optical
radiometry in more arid areas) or in areas with different
AGB densities (e.g. lidar in dense humid forest).

Comparison of Methods to Map Carbon Stocks
A number of approaches have been developed to map car-
bon stocks and AGB from the satellite observations
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described above. Each of the approaches relies on calibrat-
ing the satellite measurements to in situ estimates of AGB
at field study plots. AGB is often determined using a com-
bination of well documented allometric relationships
between simple plot-level measurements (e.g. stem diam-
eter, density and sometimes canopy height and/or depth)
and AGB, where the latter is determined from trees that
have been dissected, oven-dried and weighed [9,24,25].
This type of allometry has a long history and is used in
daily forestry operations worldwide, although refine-
ments are always needed and ongoing. We cannot
describe all of the possible approaches to estimating AGB
from satellite observations which include, for example,
spatial interpolation and kriging of field measurements,
but focus instead here on the most commonly used.

Stratify & Multiply (SM) Approach

The simplest approach to derive carbon stock maps is to
assign a single value (or a range of values) to each of a
number of land cover, vegetation type, or other thematic
map classes that have been derived from satellite data (or
other map sources) and placed into categories (such as
Evergreen Lowland Forest, Deciduous Forest, and the
like). These thematic class areas are then multiplied by the
assigned values to estimate total carbon stock values. Land
cover maps are widely available from a number of sources,
with the most consistent and best-documented effort to
date being the Global Land Cover 2000 maps produced
by a broad consortium of research groups [26]. This "strat-
ify & multiply" approach is limited in a number of ways,
but primarily by the wide range of AGB variability within
any given thematic type class, and by ambiguities in the
definition of those type classes (which is difficult to make
universal and thus has consumed the better part of many
workshops over the years).

Combine & Assign (CA) Approach

An extension of the stratify & multiply approach is a
"combine & assign" approach, which essentially makes
use of a wider range of data sets and spatial information
to extend the field AGB estimates. For example, popula-
tion estimates (or maps derived from interpolating popu-
lation location data) can be used together with vegetation
type classes and any of a number of other spatial data lay-
ers in a geographic information system (GIS) to provide
finer-grained units over which the field data can be
applied (given that adequate field data exist to character-
ize each of the basic map units). A substantial advantage
to this approach, besides finer spatial units of aggregation,
is that different weights can be applied to various data lay-
ers in order to capture information that is known (such as
locations where forests are more degraded around settled
areas) or to average gradients across large areas (such as
variations in vegetation density within type classes).
Another advantage of this type of simplified GIS "model-
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ling" is that values can be aggregated and provided for
specific political jurisdictions [27] (see Figure). Despite
these advantages, the combine & assign approach suffers
from some of the same limitations as the stratify & multi-
ply approach, particularly in that a representative value
(or range of values) is assigned to, and assumed to be rep-
resentative of, a given spatial unit and field data may not
be available to adequately characterize those units. More-
over, it becomes increasingly difficult to acquire spatially
consistent information (i.e., spatial data layers) needed
for a combine and assign approach as the size of the study
area increases.

Direct Remote Sensing (DR) Approach

A more spatially consistent way to produce carbon stock
maps is to extend the satellite measurements directly to
maps by calibrating them to field estimates of AGB using
any of a number of statistical or so-called "machine learn-
ing" techniques, such as neural networks or regression
trees [28,29]. In the simplest terms this approach makes
use of a set of field measurements to "train" an algorithm
to develop a set of rules by which any combination of sat-
ellite observations (whether radar, lidar, optical, ora com-
bination of these) produce a unique solution in terms of
"observed" (i.e., field estimated) AGB. The approach is
typically done in an iterative manner, repeatedly passing
through the data sets to produce an optimized set of rules
that account for the greatest amount of variability in the
training data and, by so doing, produce the smallest error
in the satellite-derived estimates of AGB. For example,
maps have been produced at 1 km resolution using
MODIS imagery across all of Africa, a continent of partic-
ular importance in the global carbon cycle [30], and vali-
dated using independent lidar data sets [20] (see Figure).
Related analyses have been done for the Amazon basin
[31], Russia [32] and the United States [33] using a similar
approach. Multi-sensor synergy has also been used with a
network of forest inventory data to produce ca. 1 hectare
resolution biomass maps for tropical Costa Rica (see [11])
and is in progress for the conterminous U.S. [34]. Once
the optimized rules are established for the training data,
they are then applied to the satellite images to produce
wall-to-wall maps with continuous values of AGB for each
cell (pixel) of the image (or map). A key advantage of this
approach is that the rules, once established, are easy to
understand and can potentially be adapted to a monitor-
ing framework (next section).

Comparisons and Potential for Monitoring

In addition to the general principles of the approaches, as
described above, details of the data sets and specifics of
the approaches used to produce the maps shown in Figure
1 are provided in the associated publications describing
those maps [20,27]. Both approaches made use of similar
allometric equations [9,24] (see 20 for more on this)
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relating the field measurements to estimates of AGB, but
differ in the way those field data are associated with the
GIS data layers (CA approach) or the satellite observations
(DR approach). Comparing the maps visually shows the
DR approach (Figure 1A) has more spatial detail across
the region than the CA approach (Figure 1B), with both
characterized by transitions between vegetation types
ranging from dense humid forest in the Congo Basin to
more open woodlands to the south. Note the more con-
tinuous nature of the DR map, and the more aggregated
spatial units in the CA map. The comparisons to inde-
pendent GLAS lidar metrics, which are closely related to
field estimates of AGB [11,17,20] show a narrower range
of variability within each AGB value in the DR approach,
indicating less uncertainty at any given location in the DR
map.

Even though a land cover map was not used (not needed)
for the DR approach to estimate AGB, further comparison
of the maps in Figure 1 was done by summarizing the AGB
values in both maps by land cover type (Table 1).
Although most of the classes show a similar average AGB
values within each class of the Global Land Cover 2000
product [26], note how the averages based on the CA map
tend to be higher than those derived using the DR
approach (88% of the 25 cases). It is possible that the DR
approach is systematically underestimating biomass
within cover types, but validation of this map [20] and
similar map products [29,31-33] show that not to be the
case. The apparent bias in the CA approach is most likely
associated with difficulties in assigning field plot meas-
urements to more generalized land cover categories, as
described earlier. This is most evident in classes that are
often modified by human land use (e.g. evergreen low-
land forest classes), but also in areas with little or no veg-
etation cover (see last 5 classes of Table 1). Note also that
the CA approach indicates higher AGB in deciduous
woodland than in closed deciduous forest, and other
apparent irregularities (e.g. between shrublands and
grasslands).

Any of the approaches described herein could potentially
be used in a framework for monitoring AGB stock
changes. An SM approach would use new land cover maps
to estimate changes in stocks, but the maps would need to
be recreated at both (each) time step at accuracies that
exceed those of typical current map products (particularly
given that errors multiply whenever categorical maps are
differenced for two time periods). A CA approach could
make use of successive field surveys to update maps
derived using GIS models, but field data are unlikely to
ever be sampled adequately for monitoring purposes, par-
ticularly outside "intact" forests [35], and the issues noted
above with respect to use of progressive land cover maps
(and other spatial data sets) also apply. Moreover, both of
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Comparison of Central Africa Biomass Maps. Map of above ground biomass (AGB) across Africa produced using a
"Direct Remote Sensing" approach (A) [20] and a "Combine and Assign" approach (B) [27]. The top images show maps of AGB
for the tropical forest regions of Africa, with boxes indicating those areas shown in the bottom images. The inset line graphs in
the top images show how the range of AGB relates to independent lidar metrics that are closely related to field estimates of
AGB. Less variability in the lidar height metric for each associated AGB value in the maps indicates lower uncertainty and

error.

these approaches are prone to missing changes at grain
sizes finer than the thematic map units, including forest
degradation and afforestation (regrowth) at time scales
that are meaningful to the UNFCCC process. These issues
are unlikely to impact the DR approach for monitoring
purposes because land cover maps are not required, the
spatial unit is typically much smaller than the other
approaches (i.e. the pixel size), and the data sets used (sat-
ellite observations) are not only more current but also
more consistent through time (via routine calibration
efforts). Unlike land cover or land use maps, the satellite
observations used in the DR approach are sensitive to
changes at the pixel level, thus even fine-scale changes
associated with degradation and afforestation can be
detected [11]. Nonetheless, more work needs to be done

with the DR approach in order to refine the process,
reduce uncertainty (error), and better quantify the
requirements (in terms of sample sizes and spatial
extents) for field data sets needed to calibrate and validate
the models. This topic is the focus of both applied
research for the UNFCCC process and basic research
designing the next generation of satellite missions that
will provide the essential data sets needed for any moni-
toring system relevant to reducing emissions from defor-
estation and forest degradation.

Conclusion

Well documented techniques and satellite data enable
reliable mapping of carbon stocks over large areas.
Although a number of relatively simple methods exist for
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Table |I: Biomass Densities by Land Cover Type

Class Name DR CA A

Closed evergreen lowland forest 2163 2735 572
Degraded evergreen lowland forest 121.2 1715 503
Submontane forest (900 — 1500 m) 2382 1868 514
Montane forest (>1500 m) 169.6 946 -75.0
Swamp forest 250.7 3469 962
Mangrove 483 1009 526
Mosaic Forest/Croplands 91.5 96.6 5.1

Mosaic Forest/Savanna 774 91.9 14.5
Closed deciduous forest 84.9 81.8 -3.1

Deciduous woodland 35.2 89.4 54.2
Deciduous shrubland with sparse trees 1.5 61.0 49.5
Open deciduous shrubland 12.8 61.6 488
Closed grassland 7.0 739 66.9
Open grassland with sparse shrubs 1.0 14.3 13.3
Open grassland 1.9 13.4 1.5
Sparse grassland 23 6.0 37

Swamp bushland and grassland 327 57.3 24.6
Croplands (>50%) 5.3 36.9 31.6
Croplands with woody shrubs 1.1 10.2 9.1

Irrigated croplands 1.6 448 432
Sandy desert and dunes 0.0 31.0 31.0
Stony desert 1.3 13.0 1.7
Bare rock 0.8 13.4 12.6
Salt hardpans 1.2 424 41.2
Water bodies 5.6 107.7 1021

Land cover classes derived from the GLC2000, average AGB (tons
ha-1) derived from the "direct remote sensing" (DR) and from the

"combine and assign" (CA) approaches.

The column labelled A indicates the difference between approaches
(CA-DR).

assigning field estimates of AGB to categories defined by
vegetation type classes or weighted data layers in geo-
graphic information system models, the most spatially
consistent maps are produced using models that derive
continuous values (e.g. between 0 and 500+ tons per hec-
tare) from statistically optimized decision rules. The tech-
niques and data sources described herein are published in
the refereed scientific literature and are progressing rap-
idly as new "data mining" techniques are advanced [28]
and improved satellite remote sensing data become avail-
able [11]. This situation will improve further as new satel-
lite missions come online in the next few years, several of
which are designed specifically with the intent of improv-
ing estimates of the standing stock of carbon in biomass,
and changes in those stocks through time. The UNFCCC
process would benefit from refinement and application of
these approaches and from improved data in developing
policies designed to reduce emissions from deforestation
and forest degradation.
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