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Summary 4	
  

1. Most of the information concerning how to create models or use analytic 5	
  

techniques published in the scientific literature is not really available to 6	
  

ecologists. It is stored in scientists’ digital or biological memories. We propose 7	
  

that it is time to address the problem of storing, documenting, and executing 8	
  

ecological models and workflows. 9	
  

2. We are recommending a conceptual framework to design and implement a 10	
  

model repository that will help to address this challenge.  11	
  

3. We have implemented the conceptual framework in a functional web-based 12	
  

application called ModeleR. This tool is able to document and execute all the 13	
  

models and analytical processes as well as preparing data workflows 14	
  

associated to the Sierra Nevada LTER platform (Spain).  15	
  

4. We think that model repositories will foster cooperation among scientists, 16	
  

enhancing the creation of relevant knowledge that could be transferred to 17	
  

environmental managers. The overarching idea is to create an international 18	
  

federation of repositories of models with a high degree of connectivity.  19	
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Data analysis, modeling, simulation and other similar methods play a central role in 24	
  

ecology. From statistical models to complex simulation models, the concept of the 25	
  

ecological model has become inherent to the modern ecology. The importance that 26	
  

modeling and data analysis is gaining in ecology is due to at least three main factors. 27	
  

First, there is a vast amount of primary information available to ecologists to model and 28	
  

analyze. This explosion in data availability (which is georeferenced in some cases), is a 29	
  

result of the enormous effort that ecologists and public agencies have been exerting 30	
  

over the last 3-4 decades in order to gather and share information on the structure and 31	
  

functioning of the Earth’s ecosystems. The creation of big data infrastructures that 32	
  

allow ecological data sharing (Whitlock 2011), such as GBIF (Global Biodiversity 33	
  

International Facility), LTER (Long Term Ecological Research) or NEON (National 34	
  

Ecological Observation Network) have greatly contributed to end the era when the lack 35	
  

of primary data restrained the development of ecology as a data-intensive science 36	
  

(Jones et al. 2006; Kelling et al. 2009; Michener & Jones 2012). 37	
  

The volume and availability of analytic and modeling methods have undergone an 38	
  

exponential increase in recent decades. Thanks to this evolution, ecologists can 39	
  

choose among dozens of different methodologies to analyze their primary data and 40	
  

design complex models to simulate or analyze the structure or functioning of a given 41	
  

ecosystem. 42	
  

Lastly, computer science provides a physical (hardware) and logical (software) 43	
  

framework needed to model complex systems and cope with data-intensive computing 44	
  

procedures (Hobbie 2003; Fegraus et al. 2005; Plaszczak, Pawel; Wellner, Jr. 2005). 45	
  

This new data-intensive ecology (called ecoinformatics) was recently described by 46	
  

Michener and Jones (Michener & Jones 2012). They also outlined some of the 47	
  

“remaining challenges” that ecoinformatics faces today. Here, we project our vision of 48	
  

one of these relevant challenges: How should models and algorithms be stored, 49	
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documented, and managed in a way that allows their execution and interoperability? 50	
  

Or, in the words of these authors: “little attention has been paid to preserving the 51	
  

algorithms and workflows that scientists use in assuring, analyzing and visualizing 52	
  

data” (Michener & Jones 2012).  53	
  

Our rationale is that most of the information underlying how to create models or use 54	
  

analytic methods already published in the scientific literature or in technical reports is 55	
  

not readily available to scientists. Most of this knowledge is stored in scientists’ digital 56	
  

or biological memories. Our thesis is that gathering all this knowledge is critical if we 57	
  

truly want the study of Ecology to: a) expand our knowledge of the Earth as a system 58	
  

and our understanding of human impact on that system (Voinov & Cerco 2010); and b) 59	
  

design and implement procedures for sustainable stewardship of natural resources 60	
  

(Chapin et al. 2010) in the Anthropocene era (Crutzen 2002). The creation of tools to 61	
  

preserve and manage algorithms and workflows would enhance code sharing and 62	
  

model reuse (Holzworth et al. 2010), and would help boost Ecology into taking its place 63	
  

as one of the so-called “big sciences”, whose main features encourage the growth of 64	
  

digital repositories, documentation of data and scientific processes, and creation of 65	
  

technical infrastructures to enhance international collaboration (Borgman et al. 2007).  66	
  

We argue that it is time for ecologists to address the problem of storing, documenting, 67	
  

and executing ecological models. Just as a few decades ago the need for primary-data 68	
  

repositories was obvious; today the creation of repositories of models must be 69	
  

considered the next step in the evolution of Ecology as data-intensive science. A model 70	
  

repository could be defined as an ecoinformatics tool capable of properly managing, 71	
  

documenting, and executing any analytic procedure or workflow created by ecologists. 72	
  

This challenge is not unique to Ecology, but has also arisen in other areas of science 73	
  

and technology that have followed a similar path, such as Molecular Biology or Earth 74	
  

System Science. These disciplines have evolved from gathering and documenting 75	
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primary data to creating complex models, and finally to designing and implementing 76	
  

model repositories that document and execute those models. Preserving workflows, 77	
  

models, and algorithms is, in our opinion, a problem inherent to the “information age” 78	
  

not being exclusive to any given branch of science. This shared history among similar 79	
  

disciplines could provide a valuable set of lessons that would be helpful to all of these 80	
  

fields.   81	
  

In this work, we propose a conceptual framework to develop a model repository useful 82	
  

for ecologists and environmental managers. This conceptual framework has been built 83	
  

by combining the major advances made by other related scientific areas. We will also 84	
  

illustrate an implementation of this conceptual framework in a real ecological model 85	
  

repository. The result, called ModeleR (Pérez-Pérez, R; Benito, B.M.; Bonet 2012) is 86	
  

the core of an information system that manages the data collected by the global-87	
  

change monitoring program of Sierra Nevada (Spain) LTER platform. After describing 88	
  

the system envisioned, we will highlight the benefits that this system could offer 89	
  

ecology as a science. 90	
  

 91	
  

Advances in model repositories 92	
  

Molecular Biology has advanced in the design and implementation of model 93	
  

repositories. With the immense scientific benefits gained by researchers after the 94	
  

creation of primary-data repositories such as GeneBank, documenting algorithms and 95	
  

models has come to be considered obvious and needed. According to Buckingham 96	
  

(Buckingham 2007), model repositories should allow model documenting (by means of 97	
  

XML schemas or ontologies), must be connected to primary-data repositories, and 98	
  

should be designed using the concept of web service. These concepts have been 99	
  

implemented in several tools (Hunter & Nielsen 2005; Snoep et al. 2006). We will 100	
  

highlight Biomodels (Li et al. 2010), a repository of peer-reviewed, curated, published, 101	
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versionable and parameterizable computational models. To promote the use and 102	
  

growth of Biomodels, some publishers encourage authors to upload their models here 103	
  

after publication. Other initiatives such as myExperiment (Goble et al. 2010) enable 104	
  

workflows to be shared among scientists, as in a social network. Among the major 105	
  

contributions made by Molecular Biology to the idea of an ecological model repository 106	
  

are a) the strong connection between primary-data repositories and model repositories 107	
  

and b) the efforts made to promote the use of model repositories in the scientific 108	
  

community.  109	
  

Earth System Science develops comprehensive and highly integrated models 110	
  

describing the interaction between atmosphere, hydrosphere, lithosphere, biosphere, 111	
  

and heliosphere. This need for integration has prompted the creation of tools similar to 112	
  

model repositories that are able to: a) allow coupling of model execution (Bulatewicz et 113	
  

al. 2009; Castronova et al. 2012); b) manage model versioning (Thornton et al. 2005); 114	
  

c) track computational provenance of models (Frew et al. 2008; Dozier & Frew 2009); 115	
  

and d) create models collaboratively thanks to community modeling systems (Voinov et 116	
  

al. 2010). Several initiatives have implemented this framework. We will underscore 117	
  

OpenMI (Gregersen et al. 2007), which provides a standard interface to describe, 118	
  

document, and execute hydrological models. CSDMS (Peckham et al. 2012) 119	
  

(Community Surface Dynamics Modelling System) is able to integrate a wide variety of 120	
  

Earth-surface processes considering different temporal and spatial scales. Major 121	
  

contributions of Earth System Science to the idea of an ecological-model repository 122	
  

have been the advances in model execution and system modularity. 123	
  

Lastly, Ecology is following this path at a slower pace than the aforementioned 124	
  

disciplines.  This could be due to the breadth and diversity of data types in Ecology 125	
  

(Reichman et al. 2011). This multiplicity is transferred to the methods that we use to 126	
  

analyze and process those datasets, making it overwhelming to attempt 127	
  

systematization or taxonomy either of data types or of analytic methodologies. 128	
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Regarding these difficulties, some ecologists have started paying attention to the 129	
  

process of model and algorithm documenting.  For example, J. Benz (Benz 1997) 130	
  

wrote a letter in 1997 to the editor of Ecological Modelling where he called for a 131	
  

“common model documentation etiquette”. Benz proposes a protocol to document 132	
  

ecological models. This protocol has three different levels of documenting: a) general 133	
  

model description (aims, methods, bibliography, authors, links, etc.); b) general 134	
  

information included in the first level plus detailed technical information and some basic 135	
  

information about the mathematics of the model; c) Information included in the second 136	
  

level plus detailed information about the mathematics of the model (algorithm 137	
  

description, parameters, execution rules, etc.). These ideas were partially implemented 138	
  

in an algorithm database called ECOBAS (Hoch et al. 1998; Benz & Hoch 2001; Strube 139	
  

et al. 2008).  140	
  

Conceptual framework for an envisioned model repository 141	
  

Our conceptual framework is explained by describing the basic functions of a model 142	
  

repository (fig. 1): Model documenting is the most important function that a model 143	
  

repository should have. We envision a documenting schema similar to ECOBAS (Benz 144	
  

& Hoch 2001; Strube et al. 2008). The “depth” of the documentation process will 145	
  

depend on the knowledge that we have about the model. Two different levels are 146	
  

proposed. First, a basic level implies adding general features such as authorship, 147	
  

rationale, associated bibliography, links to more information, etc. A given model can 148	
  

also be documented in a more thorough way, by adding information about the 149	
  

mathematical operators involved in the model or algorithm. This level of documenting 150	
  

should also include the description of input and output datasets as an inherent part of 151	
  

model’s documenting process. Taking into account that input/output datasets are 152	
  

extraordinarily diverse in Ecology (Reichman et al. 2011) , the repository should be 153	
  

able to “speak several metadata dialects” (Nogueras-Iso et al. 2004) used to document 154	
  

different types of datasets. This could be accomplished thanks to the creation of 155	
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crosswalks between metadata standards. Thus, the model repository could read 156	
  

metadata catalogs written with different specifications and add these datasets as input 157	
  

data. This feature will allow a high degree of connectivity and modularity between 158	
  

models because an output dataset formed in a given model could be considered an 159	
  

input dataset by another model.  160	
  

Only if the model has reached the most detailed level of documenting, could it be 161	
  

executable by the system. Regarding this function, it is also important to track specific 162	
  

actions by algorithms in input datasets. This feature, called tracking provenance (Frew 163	
  

et al. 2008; Dozier & Frew 2009) of the model, allows error tracking and the optimizing 164	
  

of model execution. To facilitate the collaborative process of creating models, the 165	
  

model repository, in our opinion, should include some functions from web 2.0. Blogging 166	
  

or adding comments to models will invite cooperation among modelers who could work 167	
  

together in the processes of model design and implementation.  168	
  

Our proposed approach will be useful only if it can satisfy the needs of scientists as 169	
  

individuals and also research groups to whom they belong. Both the models and the 170	
  

raw data are extremely valuable for ecologists, so that they would prefer to have a sort 171	
  

of local model repository to store and document their models. On the other hand, 172	
  

government agencies or research institutes would be interested in corporate-model 173	
  

repositories able to aggregate models formulated by different researchers. To cope 174	
  

with these scalability needs, we suggest the creation of a federation of local model 175	
  

repositories that are able to communicate to each other using web services. These 176	
  

services would be written using different metadata specifications and would supply 177	
  

information about input/output datasets and algorithm characteristics. This federation of 178	
  

models, based on the statement that information must be stored and curated wherever 179	
  

it is created, is best suited to promote synergy among scientists and also to respect 180	
  

their demands of managing the models that they create. This philosophy has been 181	
  

used to design and implement successful initiatives such as GBIF.  182	
  



	
   8	
  

 183	
  

ModeleR: a web-based model repository 184	
  

The conceptual framework that we have described tries to answer the initial question: 185	
  

How should models and algorithms be stored, documented, and managed in a way that 186	
  

allows their execution and interoperability? Besides formulating a conceptual 187	
  

framework, we have also implemented its principal functions. We have created a 188	
  

functional first version of a model repository. This tool, called ModeleR (Pérez-Pérez, 189	
  

R; Benito, B.M.; Bonet 2012) has been built in the context of the Sierra Nevada (Spain) 190	
  

global-change-monitoring program. Sierra Nevada (the highest mountain in the Iberian 191	
  

Peninsula) is a Biosphere reserve, a National Park, and also a LTER platform. 192	
  

ModeleR is able to document any ecological model using different levels of detail 193	
  

shown in the conceptual framework. It also allows the connection of a given model to 194	
  

any dataset documented using EML (Michener 2006). If the model is documented at 195	
  

the most detailed level, the system automatically creates an initial prototype of a Kepler 196	
  

(Altintas et al. 2004) workflow. This workflow can be used to execute the model both in 197	
  

a server and in a local computer. However, we can also upload any kind of script that 198	
  

executes the model. We have also implemented the modularity function previously 199	
  

described:  model outputs could be used by another model as inputs. To promote the 200	
  

idea of a federation of model repositories, we have created a web service management 201	
  

system that will allow the connection of ModeleR with other repositories. Finally, model 202	
  

creation and documentation can be undertaken collaboratively thanks to a blogging 203	
  

system associated to ModeleR. 204	
  

Currently, we are using ModeleR to document and execute more than 200 models and 205	
  

analytical processes as well as preparing data workflows associated to the Sierra 206	
  

Nevada LTER platform. This tool, which can be accessed via web 207	
  

(http://modeler.obsnev.es/) has become the nucleus of the platform’s information 208	
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system. The global-change-monitoring program under way in Sierra Nevada offers a 209	
  

great breadth of datasets and algorithms that have been used to test both ModeleR as 210	
  

well as the conceptual framework that support it. Fig. 2 presents three examples that 211	
  

are representatives of the amount of models documented in ModeleR. 212	
  

 213	
  

Benefits of model repositories in Ecology 214	
  

The creation of tools able to document, store and execute ecological models 215	
  

collaboratively (Byrne et al. 2010), will contribute to the advance of Ecology as a 216	
  

science in two ways: they will bolster the capacity of creating relevant knowledge and 217	
  

also will improve the capacity that Ecology has to transfer that knowledge to decision 218	
  

makers. 219	
  

Model documenting is a good practice in modeling (Scholten 2008). This task facilitates 220	
  

the process of conceptualization, mathematical description, and real implementation of 221	
  

a given model (Keller & Dungan 1999). A model repository will also help to improve 222	
  

model outreach among different scientists. We believe that model sharing via model 223	
  

repositories will allow ecologists to advance in the reproducibility of ecological analyses 224	
  

(Cassey 2006). Model sharing and code reuse will strengthen the environmental 225	
  

management decisions that could be based upon those models (Scholten 2008). If 226	
  

environmental managers are able to access some ecological models potentially useful 227	
  

in the decision-making process, they will be more likely to try to use them in their area 228	
  

of expertise. 229	
  

We are proposing the creation of tools capable of documenting and executing most 230	
  

types of ecological models or analytical processes. The model repository envisaged will 231	
  

help to extend the paradigm of metadata from datasets to models and algorithms, and 232	
  

will enlarge the toolbox that ecoinformatics is supplying to ecologists.  233	
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Finally, our approach is also taking into account the scalability needs of individuals, 234	
  

research groups, and institutes. The overarching idea is to create an international 235	
  

federation of repositories of models with a high degree of connectivity. The benefits of 236	
  

this tool are evident and can be summed up with a single word: synergy. The easier it 237	
  

is to share how we “cook” ecological data to get useful knowledge, the stronger the 238	
  

collaboration will be among peers. We propose a web portal where a user could search 239	
  

for hundreds of models and algorithms documented by other ecologists and could read 240	
  

metadata, download workflows, contact other authors to improve models, etc. We have 241	
  

the technology and the knowledge necessary to create such a tool. Now it is up to us. 242	
  

 243	
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Figure 1. Scheme showing the most important functions of the proposed model 418	
  

repository. The envisioned infrastructure should be able to document any ecological 419	
  

model. Different levels of documenting ranging from just adding a name and an unique 420	
  

identifier (using specifications like Life Science Identifiers (Bafna et al. 2008), or some 421	
  

others like Digital Object Identifier (Wang 2007)) to a detailed description of 422	
  

mathematical algorithms (by using metadata specifications such us MathML (Miner 423	
  

2005), for equations, or Systems Biology Markup Language (Hucka et al. 2003) for 424	
  

biochemical reactions) and input/output datasets (documented via metadata 425	
  

specifications such as Ecological Metadata Language (Michener 2006) and others). 426	
  

Models documented in great detail should be executed by the system. The model 427	
  

repository needs to be able to execute both workflows (like Kepler (Altintas et al. 2004) 428	
  

or Taverna (Oinn et al. 2004)) and frameworks (like OpenMI (Gregersen et al. 2007)). If 429	
  

the model is correctly documented, the system could create a prototype workflow 430	
  

automatically, using metadata from input/output datasets and algorithms. This 431	
  

conceptual framework takes into account the need for a federation of model 432	
  

repositories. Local repositories could connect to some others via web services. 433	
  

 434	
  

435	
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Figure 2. Graphic description of three examples of models documented and executed 436	
  

by ModeleR. The first example (Scheme A) shows a set of models and algorithms that 437	
  

allow the gathering of bird-census data. Cybertracker (http://cybertracker.org) yields 438	
  

raw text files via smartphones or PDAs. These files are stored in a PostgreSQL 439	
  

database. ModeleR also documents the process of creating an OLAP cube that allows 440	
  

a multidimensional query system. The outputs of this set of models are sheets and 441	
  

graphics showing the evolution of abundance vs. time, species, habitat type, etc. 442	
  

Scheme B shows a workflow that is able to download, process, and create state 443	
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indicators from MODIS snow products. ModeleR downloads HDF files from NASA’s 444	
  

servers. Then ModeleR “explodes” those files and extracts the information for storage 445	
  

in a PostgreSQL database. The last step is the calculation of snow cover indicators 446	
  

using SQL statements. The whole process has been completed combining Kepler 447	
  

workflows, SQL, and ruby on rails. The last example (Scheme C) is a workflow to 448	
  

create spatial-distribution models. Presence data are obtained from GBIF portal via 449	
  

web services. Environmental variables are stored in a local computer. Several 450	
  

modeling algorithms are executed using environmental and presence data. Then 451	
  

ensemble forecasting is done to formulate the resulting distribution model. The last 452	
  

step is to project this model into the future by using future climate simulations. 453	
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